Customer Review Summarizer

Introduction:

Websites such as Amazon and Yelp allow customers to leave reviews for various products. There
are usually hundreds of reviews for a single product; each review could be lengthy and repetitive.
Therefore automatic review summarization has a huge potential in that it could help customers to
make quick decisions on certain products. Summarization is an important challenge of natural
language understanding. The aim is to produce a condensed representation of an input text that
captures the core meaning of the original.
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1. Dataset Mining:
The dataset used consists of reviews of fine foods from Amazon. The data spans a period
of more than 10 years, including all ~500,000 reviews up to October 2012. These reviews
include product and user information, ratings, plain text review, and summary. It also
includes reviews from all other Amazon categories.

2. Data Preprocessing:
Performing basic preprocessing steps is very important before we get to the model
building part. Using messy and unclean text data is a potentially disastrous move. So in
this step, we will drop all the unwanted symbols, characters, etc. from the text that do not
affect the objective of our problem. We’ll look at the first 10 rows of the reviews and
dataset to get an idea of the preprocessing steps for the summary column.

3. Tokenization:
A tokenizer builds the vocabulary and converts a word sequence to an integer sequence.

4. Model building:



During the model building part, we need to split our dataset into a training and validation
set. We’ll use 90% of the dataset as the training data and evaluate the performance on the
remaining 10% (holdout set). In this step we need to be familiar with the terms such as
return sequence, return state, initial state and stacked LSTM.

5. Training:

In the training phase, we will first set up the encoder and decoder. We will then train the
model to predict the target sequence offset by one timestep. Let us see in detail on how to
set up the encoder and decoder. An Encoder Long Short Term Memory model (LSTM)
reads the entire input sequence wherein, at each timestep, one word is fed into the
encoder. It then processes the information at every timestep and captures the contextual
information present in the input sequence.The decoder is also an LSTM network which
reads the entire target sequence word-by-word and predicts the same sequence offset by
one timestep. The decoder is trained to predict the next word in the sequence given the
previous word.

6. Plot diagnostic:
We will plot a few diagnostic plots to understand the behavior of the model over
time.After training, the model is tested on new source sequences for which the target
sequence is unknown.

7. Improve model performance:
We will try to increase the training dataset size and build the model. The generalization
capability of a deep learning model enhances with an increase in the training dataset size.
We can try implementing Bi-Directional LSTM which is capable of capturing the context
from both the directions and results in a better context vector

8. Summary generation:
After all the steps are completed we will have the abstractive summary generated. Even
though the actual summary and the summary generated by our model do not match in
terms of words, both of them are conveying the same meaning. Our model will be able to
generate a legible summary based on the context present in the text.

Implementation and Evaluation:
Implementation code :
from attention import AttentionLayer

from google.colab import drive
drive.mount('--/content/drive")



import numpy as np

import pandas as pd

import re

from bs4 import BeautifulSoup

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad_sequences

from nltk.corpus import stopwords

from tensorflow.keras.layers import Input, LSTM, Embedding, Dense, Concatenate,
TimeDistributed

from tensorflow.keras.models import Model

from tensorflow.keras.callbacks import EarlyStopping

import warnings

pd.set_option("display.max colwidth", 200)
warnings.filterwarnings("ignore")
data=pd.read_csv("/content/drive/MyDrive/NLP//Reviews.csv",nrows=100000)
data.drop duplicates(subset=['Text'],inplace=True)#dropping duplicates
data.dropna(axis=0,inplace=True)#dropping na

data.info()

<class 'pandas.core.frame.DataFrame"™

Int64Index: 88421 entries, 0 to 99999

Data columns (total 10 columns):

# Column Non-Null Count Dtype

0 Id 88421 non-null int64

1 Productld 88421 non-null object

2 Userld 88421 non-null object

3 ProfileName 88421 non-null object

4 HelpfulnessNumerator 88421 non-null int64
5 HelpfulnessDenominator 88421 non-null int64
6 Score 88421 non-null int64

7 Time 88421 non-null int64

8 Summary 88421 non-null object

9 Text 88421 non-null object

dtypes: int64(5), object(5)
memory usage: 7.4+ MB
contraction mapping = {"ain't": "is not", "aren't": "are not","can't": "cannot", "'cause":
"because", "could've": "could have", "couldn't": "could not",
"didn't": "did not", "doesn't": "does not", "don't": "do not", "hadn't": "had not",

"hasn't": "has not", "haven't": "have not",



"he'd": "he would","he'll": "he will", "he's": "he is", "how'd": "how did",
"how'd'y": "how do you", "how'll": "how will", "how's": "how is",
"I'd": "I would", "I'd've": "I would have", "I'll": "T will", "I'll've": "I will
have","I'm": "I am", "I've": "I have", "i'd": "i would",
"i'd've": "1 would have", "i'll": "i will", "i'll've": "i will have","i'm": "i am",
" "isn't": "is not", "it'd": "it would",
"it'd've": "it would have", "it'll": "it will", "it'll've": "it will have","it's": "it is",
"let's": "let us", "ma'am": "madam",
"mayn't": "may not", "might've": "might have","mightn't": "might
": "might not have", "must've": "must have",
"mustn't": "must not", "mustn't've": "must not have", "needn't": "need not",
need not have","o'clock": "of the clock",
"oughtn't": "ought not", "oughtn't've": "ought not have", "shan't": "shall not",
"sha'n't": "shall not", "shan't've": "shall not have",
"she'd": "she would", "she'd've": "she would have", "she'll": "she will",
"she'll've": "she will have", "she's": "she is",
"should've": "should have", "shouldn't": "should not", "shouldn't've": "should
not have", "so've": "so have","so's": "so as",
"this's": "this is","that'd": "that would", "that'd've": "that would have", "that's":
"that is", "there'd": "there would",
"there'd've": "there would have", "there's": "there is", "here's": "here
,"they'd": "they would", "they'd've": "they would have",
"they'll": "they will", "they'll've": "they will have", "they're": "they are",
"they've": "they have", "to've": "to have",
"wasn't": "was not", "we'd": "we would", "we'd've": "we would have", "we'll":
"we will", "we'll've": "we will have", "we're": "we are",
"we've': " weren't": "were not", "what'll": "what will", "what'll've":
" "what're": "what are",
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"what will have",

"what's": "what 1s", "what've": "what have", "when's": "when is", "when've":

"when have", "where'd": "where did", "where's": "where is"
"where've": "where have", "who'll": "who w111" "who'll've": "who will have",
"who's": "who is", "who've": "who have",

"why's": "why is", "why've": "why have", "will've": "will have", "won't": "will
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"y'all'd": "you all would","y'all'd've": "you all would have","y'all're": "you all
you all have",

"you'd": "you would", "you'd've": "you would have", "you'll": "you will",
you will have",
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"you're": "you are", "you've": "you have"}
import nltk
nltk.download('stopwords')
stop_words = set(stopwords.words('english'))

def text cleaner(text,num):

newString = text.lower()

newString = BeautifulSoup(newString, "lxml").text

newString = re.sub(r'\([")]*\)', ", newString)

newString = re.sub('"',", newString)

newString ="' 'join([contraction_mapping[t] if t in contraction_mapping else t for t in
newString.split(" ")])

newString = re.sub(r"'s\b","" ,newString)

newString = re.sub("[*a-zA-Z]", " ", newString)
newString = re.sub('[m]{2,}', 'mm', newString)
1f(num==0):

tokens = [w for w in newString.split() if not w in stop words]
else:
tokens=newString.split()
long_words=[]
for i in tokens:
if len(i)>1: #removing short word
long words.append(i)
return (" "join(long_words)).strip()
[nltk data] Downloading package stopwords to /root/nltk data...
[nltk data] Unzipping corpora/stopwords.zip.
#call the function
cleaned text =[]
for t in data['Text']:
cleaned_text.append(text cleaner(t,0))
#call the function
cleaned summary =[]
for t in data['Summary']:
cleaned summary.append(text cleaner(t,1))
data['cleaned text'|=cleaned text
data['cleaned summary']=cleaned summary
data.replace(", np.nan, inplace=True)
data.dropna(axis=0,inplace=True)
import matplotlib.pyplot as plt



text word _count =[]
summary word count = []

# populate the lists with sentence lengths
for i in data['cleaned text']:

text word count.append(len(i.split()))

for 1 in data['cleaned summary']:
summary word count.append(len(i.split()))

length df = pd.DataFrame({'text":text word count, 'summary':summary word count})

length_df.hist(bins = 30)

plt.show()
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for 1 in data['cleaned summary']:

if(len(i.split())<=8):

cnt=cnt+1

print(cnt/len(data['cleaned summary']))
0.9424907471335922
max_text len=30
max_summary len=8
cleaned text =np.array(data['cleaned text'])
cleaned summary=np.array(data['cleaned summary'])



short_text=[]
short summary=[]

for i in range(len(cleaned_text)):
if(len(cleaned _summary[i].split())<=max_summary len and
len(cleaned_text[i].split())<=max_text len):
short_text.append(cleaned text[i])
short summary.append(cleaned summary][i])

df=pd.DataFrame({'text":short_text,'summary':short summary})

dff'summary'] = df['summary'].apply(lambda x : 'sostok '+ x + ' eostok’)

from sklearn.model selection import train_test split

x_tr,x_valy try val=train_test split(np.array(df]'text']),np.array(df['summary']),test size=0.1,ra
ndom_state=0,shuffle=True)

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad_sequences

#prepare a tokenizer for reviews on training data
x_tokenizer = Tokenizer()

x_tokenizer.fit on_texts(list(x_tr))

thresh=4

cnt=0
tot_cnt=0
freq=0
tot_freq=0

for key,value in x_tokenizer.word_counts.items():
tot_cnt=tot cnt+1
tot freq=tot freq+value
if(value<thresh):
cnt=cnt+1
freq=freq+value

print("% of rare words in vocabulary:",(cnt/tot_cnt)*100)
print("Total Coverage of rare words:",(freq/tot_freq)*100)
% of rare words in vocabulary: 66.12339930151339

Total Coverage of rare words: 2.953684513790566
#prepare a tokenizer for reviews on training data
x_tokenizer = Tokenizer(num_words=tot cnt-cnt)



x_tokenizer.fit_on_texts(list(x_tr))

#convert text sequences into integer sequences
Xx_tr seq = x_tokenizer.texts to sequences(x_tr)
x_val seq = x_tokenizer.texts to sequences(x val)

#padding zero upto maximum length
x_tr = pad sequences(x tr seq, maxlen=max text len, padding='post')
x_val = pad sequences(x val seq, maxlen=max text len, padding="post")

#size of vocabulary ( +1 for padding token)
X_voc = x_tokenizer.num words + 1

X_VOC

8440

#prepare a tokenizer for reviews on training data
y_tokenizer = Tokenizer()

y_tokenizer.fit_ on_texts(list(y_tr))

thresh=6

cnt=0
tot_cnt=0
freq=0
tot_freq=0

for key,value in y_tokenizer.word counts.items():
tot _cnt=tot cnt+1
tot_freq=tot freq+value
if(value<thresh):
cnt=cnt+1
freq=freq+value

print("% of rare words in vocabulary:",(cnt/tot_cnt)*100)
print("Total Coverage of rare words:",(freq/tot_freq)*100)
% of rare words in vocabulary: 78.12740675541863

Total Coverage of rare words: 5.3921899389571895
#prepare a tokenizer for reviews on training data
y_tokenizer = Tokenizer(num_words=tot cnt-cnt)
y_tokenizer.fit on_texts(list(y_tr))

#convert text sequences into integer sequences



y tr seq = Yy _tokenizer.texts to sequences(y_tr)
y val seq = y tokenizer.texts to sequences(y val)

#padding zero upto maximum length
y tr = pad sequences(y tr seq, maxlen=max summary len, padding="post')
y val = pad sequences(y val seq, maxlen=max summary len, padding='post')

#size of vocabulary
y voc = y tokenizer.num words +1
ind=[]
for 1 in range(len(y _tr)):
cnt=0
forjiny tr[i]:
if j1=0:
cnt=cnt+1
if(cnt==2):
ind.append(i)

y_tr=np.delete(y_tr,ind, axis=0)
x_tr=np.delete(x_tr,ind, axis=0)
ind=[]
for i in range(len(y_val)):
cnt=0
forjiny val[i]:
if j1=0:
cnt=cnt+1
if(ent==2):
ind.append(i)

y_val=np.delete(y_val,ind, axis=0)
x_val=np.delete(x_val,ind, axis=0)
from keras import backend as K
K.clear session()

latent_dim = 300
embedding dim=100

# Encoder
encoder_inputs = Input(shape=(max_text len,))



#embedding layer
enc_emb = Embedding(x voc, embedding_dim,trainable=True)(encoder_inputs)

#encoder Istm 1
encoder Istml =
LSTM(latent dim,return_sequences=True,return_state=True,dropout=0.4,recurrent dropout=0.4

)

encoder outputl, state_hl, state cl =encoder Istml(enc_emb)

#encoder Istm 2
encoder Istm2 =
LSTM(latent dim,return_sequences=True,return_state=True,dropout=0.4,recurrent dropout=0.4

)

encoder output2, state h2, state ¢2 = encoder Istm2(encoder outputl)

#encoder Istm 3

encoder Istm3=LSTM(latent dim, return state=True,
return_sequences=True,dropout=0.4,recurrent_dropout=0.4)
encoder outputs, state_h, state_c= encoder Istm3(encoder output2)

# Set up the decoder, using ‘encoder_states’ as initial state.
decoder_inputs = Input(shape=(None,))

#embedding layer
dec_emb layer = Embedding(y voc, embedding dim,trainable=True)
dec_emb =dec_emb layer(decoder inputs)

decoder Istm = LSTM(latent dim, return_sequences=True,
return_state=True,dropout=0.4,recurrent _dropout=0.2)
decoder outputs,decoder fwd state, decoder back state =
decoder Istm(dec emb,initial state=[state h, state c])

# Attention layer
attn_layer = AttentionLayer(name="attention layer")

attn_out, attn_states = attn_layer([encoder_outputs, decoder outputs])

# Concat attention input and decoder LSTM output
decoder concat_input = Concatenate(axis=-1, name='concat layer')([decoder outputs, attn_out])

#dense layer



decoder dense = TimeDistributed(Dense(y_voc, activation='softmax'))
decoder outputs = decoder _dense(decoder concat_input)

# Define the model
model = Model([encoder_inputs, decoder inputs], decoder outputs)

model.summary()

WARNING:tensorflow:Layer Istm will not use cuDNN kernel since it doesn't meet the cuDNN
kernel criteria. It will use generic GPU kernel as fallback when running on GPU
WARNING:tensorflow:Layer Istm_1 will not use cuDNN kernel since it doesn't meet the
cuDNN kernel criteria. It will use generic GPU kernel as fallback when running on GPU
WARNING:tensorflow:Layer Istm_2 will not use cuDNN kernel since it doesn't meet the
cuDNN kernel criteria. It will use generic GPU kernel as fallback when running on GPU
WARNING:tensorflow:Layer Istm_3 will not use cuDNN kernel since it doesn't meet the
cuDNN kernel criteria. It will use generic GPU kernel as fallback when running on GPU
Model: "model"

Layer (type) Output Shape Param # Connected to
input_1 (InputLayer) [(None, 30)] 0

embedding (Embedding) (None, 30, 100) 844000 input_1[0][0]
Istm (LSTM) [(None, 30, 300), (N 481200  embedding[0][0]
input 2 (InputLayer) [(None, None)] 0

Istm_1 (LSTM) [(None, 30, 300), (N 721200  Istm[0][0]

embedding 1 (Embedding) (None, None, 100) 198900  input 2[0][0]

Istm_2 (LSTM) [(None, 30, 300), (N 721200  Istm_1[0][0]



Istm 3 (LSTM) [(None, None, 300), 481200  embedding 1[0][0]
Istm 2[0][1]
Istm_2[0][2]

attention_layer (AttentionLayer ((None, None, 300), 180300  Istm 2[0][0]
Istm_3[0][0]

concat_layer (Concatenate)  (None, None, 600) 0 Istm_3[0][0]
attention_layer[0][0]

time_distributed (TimeDistribut (None, None, 1989) 1195389  concat layer[0][0]

Total params: 4,823,389

Trainable params: 4,823,389

Non-trainable params: 0

model.compile(optimizer="rmsprop', loss='sparse categorical crossentropy")

es = EarlyStopping(monitor='val loss', mode='min', verbose=1,patience=2)
history=model.fit([x_tr,y tr[:,:-1]], y_tr.reshape(y_tr.shape[0],y tr.shape[1], 1)[:,1:]
,epochs=50,callbacks=[es],batch _size=128, validation data=([x_ val,y val[:,:-1]],
y_val.reshape(y_val.shape[0],y_val.shape[1], 1)[:,1:]))

# Encode the input sequence to get the feature vector
encoder model = Model(inputs=encoder_inputs,outputs=[encoder outputs, state h, state c])

# Decoder setup

# Below tensors will hold the states of the previous time step
decoder state input h = Input(shape=(latent dim,))
decoder state input c = Input(shape=(latent dim,))

decoder hidden_state input = Input(shape=(max_text len,latent dim))

# Get the embeddings of the decoder sequence

dec_emb2=dec_emb layer(decoder inputs)

# To predict the next word in the sequence, set the initial states to the states from the previous
time step



decoder outputs2, state h2, state c2 = decoder_Istm(dec_emb2,
initial state=[decoder_state input h, decoder state input c])

#attention inference
attn_out inf, attn_states_inf = attn_layer([decoder hidden state input, decoder outputs2?])
decoder inf concat = Concatenate(axis=-1, name='concat')([decoder outputs2, attn_out inf])

# A dense softmax layer to generate prob dist. over the target vocabulary
decoder outputs2 = decoder dense(decoder inf concat)

# Final decoder model
decoder model = Model(
[decoder inputs] + [decoder hidden state input,decoder state input h,
decoder state input c],
[decoder outputs2] + [state h2, state c2])
def decode sequence(input_seq):
# Encode the input as state vectors.
e out,e h, e c=encoder model.predict(input_seq)

# Generate empty target sequence of length 1.
target seq = np.zeros((1,1))

# Populate the first word of target sequence with the start word.
target seq[0, 0] = target word_index['sostok']

stop_condition = False
decoded sentence ="
while not stop_condition:

output tokens, h, ¢ = decoder model.predict([target seq] + [e_out,e h,e c])
# Sample a token
sampled token index = np.argmax(output tokens[0, -1, :])

sampled token = reverse target word index[sampled token index]

if(sampled_token!='eostok'):
decoded sentence +="''+sampled token

# Exit condition: either hit max length or find stop word.
if (sampled token == 'eostok' or len(decoded sentence.split()) >= (max_summary len-1)):



stop_condition = True

# Update the target sequence (of length 1).
target seq = np.zeros((1,1))
target seq[0, 0] = sampled token index

# Update internal states
e he c=h,c

return decoded sentence
def seq2summary(input_seq):
newString="
for i in input_seq:
if((i!=0 and i!=target word_index['sostok']) and i!=target word index|['eostok']):
newString=newString+reverse target word index[i]+'"'
return newString

def seq2text(input_seq):

newString="

for i in input_seq:

if(i!=0):
newString=newString-+reverse source word index[i]+"'

return newString
for 1 in range(0,5):

print("Review:",seq2text(x_tr[i]))

print("Original summary:",seq2summary(y_tr[i]))

print("Predicted summary:",decode_sequence(x_tr[i].reshape(l,max_text len)))

print("\n")
Review: gave caffeine shakes heart anxiety attack plus tastes unbelievably bad stick coffee tea
soda thanks
Original summary: hour
Predicted summary: green tea

Review: got great course good belgian chocolates better
Original summary: would like to give it stars but
Predicted summary: delicious



Review: one best flavored coffees tried usually like flavored coffees one great serve company
love

Original summary: delicious

Predicted summary: great coffee

Review: salt separate area pain makes hard regulate salt putting like salt go ahead get product
Original summary: tastes ok packaging
Predicted summary: salt

Review: really like product super easy order online delivered much cheaper buying gas station
stocking good long drives

Original summary: turkey jerky is great

Predicted summary: great



